KS PERMAGLIDE® plain bearings

Plain bearing mounting: Press-in force and joint pressure

Press-in force and joint pressure are interdependent. The joint pressure occurs between the housing bore and the surface of the bush jacket. It can be understood as a measure of how securely the bush fits in the housing. Together with other factors, the joint pressure influences the amount of press-in force.

Calculating the press-in force

The press-in force depends upon many factors, which are extremely difficult to measure accurately, for example:

- · Actual press-fit
- Coefficient of friction
- Scoring
- Press-in speed

Motorservice offers the calculation of the press-in force as a service. In most cases, the estimate of press-in force as per Fig. 1 is sufficient.

Determining the bush press-in force

Figure 1 below shows the maximum required press-in force per mm of bush width. The curves represent the bush outside diameter D_0 and the bush wall thickness s_3 to DIN ISO 3547.

This calculation assumes a steel housing with a diameter of D_G that has been adapted to the bush outside diameter D_O . The selected ratio is D_G : $D_O \approx 1.5...2$.

Fig. 1: Press-in force FE

Example of estimate of press-in force F_{total}

Given:	Bush	PAP 4030 P14	
	Bush outside diameter	$D_0 = 44 \text{ mm}$	
	Bush width	B = 30 mm	
	Bush wall thickness	$s_3 = 2 \text{ mm}$	
[14]	$F_{\text{total}} = F_{\text{F}} - B$	= 340 N/mm – 30 mm	= 10200 N

 $F_F = 340 \text{ N/mm (from Fig. 55, D}_0 = 44 \text{ mm, s}_3 = 2 \text{ mm)}$

